Dynamic Pricing in a Smart Grid World
NARUC Webinar
January 26, 2010

Theresa Flaim, Energy Resource Economics, LLC
Roger Levy, Levy Associates
Chuck Goldman, Project Manager
Electricity Markets and Policy Group
Lawrence Berkeley National Laboratory
Webinar Objectives

Can you have a Smart Grid without “smart pricing”?
What is “smart pricing”?

1. Understand the relationship between rates, prices, and smart grid.
2. Identify and explore key rate related policy issues.
3. Review customer response.
4. Identify potential implementation and transition options.
Presentation Outline

I. Background
II. Rate Design Issues
III. Experience to Date
IV. Where do we go from here?
V. References
I. Background

A. What is a Smart Grid?

B. What rate features would help maximize the benefits of a Smart Grid?
Definition of a Smart Grid

Smart Grid is a system of information and communication applications integrated with electric generation, transmission, distribution, and end use technologies that:

1. **Promote Customer Choice**
 - enables consumers to manage their usage and choose the most economically efficient offerings

2. **Improve Reliability**
 - uses automation and alternative resources to maintain delivery system reliability and stability, and

3. **Integrate Renewables**
 - integrates renewable, storage, and generation alternatives.
Are “smart rates” necessary to achieve the benefits of Smart Grid?

- Yes, especially to achieve the potential benefits for consumers:
 - Rate structures provide price signals.
 - Price signals link the utility system and customer.
 - Price establishes the customer value function.
 - Price enables the benefits of smart grid to be achieved.

- Rate design for regulated service is the domain of state regulatory commissions - it is not being addressed by NIST*.

*NIST = National Institute of Standards and Technology
“Smart pricing” – Ideal features from a Smart Grid perspective

- Provide meaningful customer information
 - Easy to understand use-cost relationship
 - Signals customers can and are willing to respond to

- Digital price signals that can be:
 - Communicated or broadcast electronically
 - Acted upon by customer controls, smart appliances, and energy management systems

- Prices that integrate efficiency, demand response, distributed generation alternatives, and renewables.
II. Rate Design Issues

A. Market context
B. Defining Dynamic Pricing
 1. Taxonomy of Products
 2. Rate Structures for Firm Service
 3. Pricing Product Overlays
Market Context: Regulated Monopoly

Under the vertically integrated model, engineering, economic planning, system operations are closely linked over time.
Market Context: Competitive Markets

Markets perform the same functions through a series of markets which operate over different time horizons, creating new product opportunities for retail customers and new opportunities for efficiency gains.
II. Rate Design Issues

A. Market context

B. Defining Dynamic Pricing
 1. Taxonomy of Products
 2. Rate Structures for Firm Service
 3. Pricing Product Overlays
Defining Dynamic Pricing – Taxonomy of Products

Traditional Retail View

Customer Choice and Control
- Customer decides when and how much to consume
- Fully hedged service*
 - Flat, uniform price
 - Tiered (inclining or declining) rates
 - Time of use rates

Wholesale View

“Load as Resource”

Customers Bid to Supply
- Economic products - customers bid to curtail at a given price
 - Day-ahead energy market
 - Real-time energy market
- Reliability products
 - Capacity
 - Emergency
 - Ancillary services

Prices are set prospectively, but may be subject to adjustment through mechanisms such as fuel cost adjustment riders.
How Products Align with Market Time Frames

Capacity Markets
- Years
 - System Planning
- Months
 - Operational Planning

Energy Markets
- Day-ahead
 - Scheduling
- In-day
 - Dispatch

Ancillary Services
- < 15 minutes
- Real-time

- Energy Efficiency
- Time of Use Rates
- Day-ahead RTP
- CPP PTR

Time Frame and System Functions

LBNL Smart Grid Technical Advisory Project
Focus of This Presentation: Traditional Retail View

- **Two types of products:**
 - Regulated rates for basic firm or default service
 - Product overlays – rate options that are designed to overlay the underlying firm service rate

- **Wholesale demand response programs**
 - ISOs are also developing demand response programs whose benefits would be enabled by Smart Grid and AMI infrastructure
 - A detailed discussion of DR program design in wholesale markets is beyond the scope of this presentation
Defining Dynamic Pricing: Six Basic Structures for Firm or Default Service*

- Flat energy rates
- Flat demand/energy rates
- Tiered rates (inclining or declining blocks)
- Time of use (TOU) rates
- Variable peak pricing (VPP) rates
- Real time pricing (RTP) rates

*Most rate structures also include a customer or access charge.
Time-Varying Rate Structures (typical designs)

- **Time of Use**
 - Prices for peak, shoulder and off-peak periods established a year in advance

- **Variable Peak Pricing (VPP)**
 - A hybrid of TOU and RTP
 - The on-peak *period* (hours and seasons) is defined in advance
 - Peak period *prices* for the next day are established based on the day-ahead forecast of wholesale market prices

- **Real-time Pricing (RTP)**
 - Hourly prices change based on system or market conditions on a day-ahead, hour-ahead or real-time basis

There is also a product overlay known as variable peak pricing which is a variant of critical peak pricing.
Comparison of TOU and Variable Peak Pricing

Proposed 3-Part TOU

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Wkdy																									
Wknd																									

Under traditional TOU, the peak, shoulder and off-peak price would typically be established a year in advance.

Proposed VPP

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Wkdy																									
Wknd																									

Under VPP, the on peak price is set equal to the average day-ahead wholesale market price for the on-peak hours.
What is “dynamic” when time is a continuum?

In the context of Smart Grid, “dynamic” refers to rates that vary in this time frame.
Defining Dynamic Pricing: Product Overlays

- A product overlay can simply be layered on top of the existing firm rate under specified conditions, with no (or minimal) adjustments to the underlying basic firm rate.

- Examples:
 - Interruptible/curtailable (I/C) rates
 - Direct load control (DLC)
 - Critical peak pricing (CPP)
 - Peak time rebate (PTR)
 - 2-part real time pricing (2-Part RTP)
Pricing Product Overlays: CPP & PTR (Typical Designs)

<table>
<thead>
<tr>
<th>Design Feature</th>
<th>Critical Peak Pricing</th>
<th>Peak Time Rebate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource goal</td>
<td>Peak load reductions</td>
<td>Same</td>
</tr>
<tr>
<td>Critical Peak Period Definitions</td>
<td>Typically defined in advance</td>
<td>Same</td>
</tr>
<tr>
<td>Event Price</td>
<td>Typically defined in advance</td>
<td>Same</td>
</tr>
<tr>
<td>Revenue Neutrality (relative to base case)</td>
<td>Firm rate + CPP rate designed to be revenue neutral</td>
<td>PTR not designed to be revenue neutral (requires initial rate increase to cover rebates)</td>
</tr>
<tr>
<td></td>
<td>▪ Can create windfall gains & losses</td>
<td>▪ Can create windfall gains due to how the CBL is defined</td>
</tr>
<tr>
<td></td>
<td>▪ May need revenue adjustments if all events are not called in order to recover required revenue</td>
<td>▪ Can be called only as needed</td>
</tr>
<tr>
<td>Customer-specific baseline load (CBL)</td>
<td>Not required</td>
<td>Required – a major implementation issue</td>
</tr>
</tbody>
</table>
Pricing Product Overlays: Two-Part RTP Overlay

- **Part 1 – Customer baseline load (CBL):**
 - Retains the price hedge embedded in the customer’s basic service rate
 - Requires setting a CBL, typically defined by the historical hourly load profile

- **Part 2 – Hourly marginal cost:**
 - Changes in usage from the CBL would be priced at utility’s marginal cost (or market price)
Pricing Product Overlays: Two-Part RTP Overlay

Customer “sells” usage at marginal cost

Customer “buys” additional usage at marginal cost

Actual Load

CBL

MWh

Hours in Typical Week Day of Billing Period

1

24
III. Experience to Date

A. What do we know?
B. What don’t we know?
C. What are we still arguing about?
What do we know? Many customers respond to price; some more than others (1)

- **Customers in aggregate** do respond to prices
 - Response varies by:
 - Customer class (residential, commercial, industrial)
 - Income/state of the economy
 - Energy intensity (appliance/equipment mix; industrial process)
 - Weather
 - Individually, some customers respond very little; others are much more responsive. Large users provide larger load reductions. Automation increases response and improves customer satisfaction.

- **Size** (of the load response) **matters, but doesn’t tell the whole story**

- **Need elasticities to understand and normalize effects**
 Overall, price response is relatively inelastic (A **10% increase** in electricity prices for residential customers results in a **3% reduction** in consumption, based on past studies)
What do we know? Price Elasticities for Time-Varying Rates (2)

Results vary by sector, income, price differential, rate design, general economic conditions and other factors.

What do we know? Price Elasticity Estimates for Time-Varying Rates (by sector and type of rate) (3)

Electricity Price Elasticity Estimates - Range and Mass Central Points (Absolute Values) for 15 Studies

Points are mass center, lines the values range (where appropriate)

Own-price elasticity (all others substitution)

Source: Neenan, B., Eom, J. January 2008, p. 27.
What do we know? Big rate changes create big bill impacts (4)

- Size and distribution of bill impacts depend on:
 - The difference between the existing rate structure and the new rate structure
 - Differences among customer load profiles
 - If all customers have the identical load shape and the new rate is revenue neutral, there would be no bill impacts from a change in rate design
 - Differences will be relatively larger for rate classes that are very heterogeneous (i.e., industrial compared to residential)
 - Many people are much more averse to losses than they are happy with gains of equal amounts
What do we know? Rate changes create bill impacts (5)
(Residential Pilot Example from California Statewide Pricing Pilot)

- Bill impacts vary depending upon customer load shapes, and differences between the base rate and new rate structure.
- Under voluntary subscription (like the pilot illustrated below), we expect to see more winners than losers.

Distribution of Participating Customer Bill Impacts
(SDGE CPP-V Example, July 2003 thru May 2004)

Source: CEC analysis of SPP billing data, August 2004 (SDG&E).
What do we know: Value of product overlays depends on price volatility and ability of customers to respond

NYISO Day-Ahead Prices: May–Dec 2001
II. Experience to Date

A. What do we know?
B. **What don’t we know?**
C. What are we still arguing about?
What don’t we know or need to understand better?

- We understand something about how and why some customers respond, but less about others.
- Will response behavior persist or erode over time?
- How can the results from one utility be extrapolated to other regions with different:
 - Climate
 - Customer characteristics (demographics, income)
 - Appliance/equipment mix
 - Electricity prices and rate structures
- What basic types of education, communication and enabling technology will work best to improve customer response?
- More pilots with rigorous experimental designs will help
II. Experience to Date

A. What do we know?
B. What don’t we know?
C. What are we still arguing about?
What is demand response really worth?

- Is a negawatt really the same thing as a kilowatt? How can you “sell” a product (kWh reduction) you haven’t purchased?
- One issue: if you pay customers a price to reduce load that exceeds the actual avoided costs, it can create negative social welfare impacts
- ISOs have adopted different approaches for paying DR resources:
 - Pay full LMP (CA)
 - Establish a price floor for DR bids (NY and NE)
 - Subtract the generation and transmission portion of the retail rate from LMP to avoid over-payment (PJM)
- FERC issued a NOPR in March 2010 to establish consistent pricing across ISOs for DR resources participating in day-ahead and real-time energy markets (Docket No. RM10-17-000)
- Issue also applies to the design of retail rate programs (CPP and PTR)
IV. Where do we go from here?

A. Wait and See

B. Consider Design Choices – what are the tradeoffs?

C. Plan for a transition
Wait and See

- **Do nothing – let others resolve the uncertainties**
 - Observe how FERC resolves certain design issues that affect participation by and/or payments to DR resources
 - Let the wholesale ISO/RTO define DR products for retail customers
 - Support and observe rigorous consumer behavior study plans (e.g., DOE SGIG projects, but results won’t be available until late 2013)

- **When to begin planning – Factors to consider:**
 - Are there state mandates (e.g., renewable portfolio standards) that will have to be addressed?
 - Do you want your customers to be able to take advantage of smart appliances?
 - Do you anticipate a growing penetration of electric vehicles in your region?
 - Earlier preparation and planning might mitigate potential problems and minimize lost opportunities
IV. Where do we go from here?

A. Wait and See

B. Consider Design Choices – what are the tradeoffs?
 1. Basic firm service or product overlay?
 2. Mandatory vs. voluntary participation?

C. Plan for a transition
Tradeoffs: Basic Service or Product Overlay?

Basic Service
- **Pros:** Offers greatest potential for economic efficiency gains
- **Cons:** Will be more difficult due to conflicting regulatory goals (bill impacts)

Product Overlays
- **Pros:** Can design the overlay without having to re-design the underlying rate for basic service
- **Cons:** Will have more limited potential for improving overall economic efficiency
Economic Potential, Bill Impacts and Smart Grid Benefits of Different Rates (compared to flat rates)

<table>
<thead>
<tr>
<th>Rate Structure</th>
<th>Economic Efficiency Potential</th>
<th>Initial Bill Impacts (assumes no response)</th>
<th>Potential to Maximize Smart Grid Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Rates + PTR or CPP Overlay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat + PTR</td>
<td>Low/moderate</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Flat + CPP</td>
<td>Low/moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>TOU + PTR or CPP Overlay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOU + PTR</td>
<td>Moderate/high</td>
<td>Moderate/high</td>
<td>Moderate</td>
</tr>
<tr>
<td>TOU + CPP</td>
<td>Moderate/high</td>
<td>Moderate/high</td>
<td>Moderate</td>
</tr>
<tr>
<td>Dynamic Base Rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-Part RTP</td>
<td>High/higher w/ technology</td>
<td>Low</td>
<td>High/very high</td>
</tr>
<tr>
<td>TOU-VPP</td>
<td>High/very high</td>
<td>High</td>
<td>Moderate/high</td>
</tr>
<tr>
<td>Real Time Pricing</td>
<td>High/higher w/ technology</td>
<td>Very high</td>
<td>Very high</td>
</tr>
</tbody>
</table>
Tradeoffs: Mandatory vs. Voluntary Participation (1)

- **Mandatory Rates (changes in firm or default rate structure)**
 - **Pros:** Likely to achieve the largest overall economic benefits
 - **Cons:** Can result in large windfall gains and losses, leading to strong customer opposition

- **Mandatory Assignment with an Opt-out provision**
 - **Pros:**
 - Uses customer inertia to “nudge” people onto more efficient rate structure
 - Preserves customer choice
 - Creates larger potential market to enable smart appliances, energy management options and competitive pricing
 - **Cons:** might have customers migrate in larger numbers if prices change
Tradeoffs: Mandatory vs. Voluntary Participation (2)

- Voluntary rate structures – offered to all

 - **Pros:** Customers get to decide whether they want to be on the new rate (preserves customer choice)

 - **Cons:**
 - Potential for windfall losses to the utility due to adverse selection; encourages utilities to design rates in a way to minimize potential losses (ex: TOU rates with very long on-peak periods, low peak/off peak price differentials, etc.)
 - Imposes need for expensive marketing and creates a “pull” environment
 - Makes it difficult to achieve demand response saturations necessary to help manage congestion in specific locations (load pockets)
Tradeoffs: Mandatory vs. Voluntary Participation (3)

- **Voluntary rate structures – targeted recruitment**
 - **Pros:**
 - Allows marketing to be targeted to those customers most likely to respond or to areas (load pockets) where demand response could have greatest value
 - Would help reduce marketing costs and increase resulting impacts
 - **Cons:**
 - Could be perceived as discriminatory
IV. Where do we go from here?

A. Wait and See

B. Consider Design Choices – what are the tradeoffs?

C. Plan for a transition
Plan for a Transition: What are the issues?

1. How do we transition customers from existing flat and tiered rates to a dynamic rate?
2. How do we educate customers regarding both the opportunities and risks?
3. Will technologies be available so customers can automate their response?
4. What can we do to identify and mitigate potential adverse bill impacts before they create problems?
Plan for a Transition: Technology issues

3. Will technologies be available so customers can automate their response?

- **Utility provided programs**
 - Can be implemented in 1-2 years
 - Limits technology options, customer choice, cost
 - May require subsidies, incentives on top of rate

- **Non/utility competitive market options**
 - Will require 3-5 years to seed the market
 - Will encourage multiple technology, service, cost, and customer choice options
 - May require subsidies or incentives to facilitate implementation and accelerate customer purchase
Plan for a Transition: Rate Transition Options

How do we transition customers from existing flat and tiered rates to a dynamic rate?

- **Time Frame Issues:**
 - Education: [Virtual Participation] familiarize customers with rate structure and prices before rate introduction – minimum 6-12 months.
 - Education: need to provide continuing information on adaptation methods and technologies – ongoing.
 - Technologies: 3-5 year minimum acquisition cycle for low cost adaptation options
 - Technologies: 4-9 year minimum acquisition cycle for major appliance and infrastructure options

- **Rate Design considerations / options**
 - Transition from “safe” PTR to dynamic CPP.
 - Phase in dynamic rate price differentials over a 3-5 year period.
 - Opt-out options to hedged flat or TOU rate.
Plan for a Transition: Education Transition Options

How do we educate customers regarding both the opportunities and risks?

- **Pre-Rate Introduction - Shadow Bills [Virtual Participation]**
 - Provides customers with side-by-side comparison of potential bill impacts
 - Can be supplemented with adaptation and technology information to address opportunities and mitigation

- **Post-Rate Introduction (ongoing)**
 - Web-based tools and information
 - Case studies to illustrate adaptation
 - Technology reviews, case studies, incentives
 - Shadow bills, cumulative accruing impacts to provide post implementation (purchase) confirmation
Plan for a Transition: Mitigation Options

Traditional Approach

- Basic Education
 - 3-6 months

Rate Transition

- Shadow Bills
 - 12 months

- Ongoing Education

- Rate Introduced

Rate Phase-in

- Shadow Bills
 - 12 months

- Mitigation Opportunities

- CPP Rate
 - Step 1
 - Step 2
 - Step 3

LBNL Smart Grid Technical Advisory Project
Contact Information

- Chuck Goldman
 Lawrence Berkeley National Laboratory
 CAGoldman@lbl.gov
 510 486-4637

- Roger Levy
 Smart Grid Technical Advisory Project
 RogerL47@aol.com
 916 487-0227

- Theresa Flaim
 Energy Resource Economics, LLC
 Flaim_t@msn.com
 865 909-0535
V. References
References

